

Theorems for the orbits of a photon near a black hole

Alexander Gofen (2025)

Recalling that $u = \frac{1}{r}$ and $r > 2GM$ (outside the horizon) so that $u < \frac{1}{2GM}$ and $1 - 2GMu > 0$, the following takes place.

THEOREM 2: Given that the parameter b is defined only outside the horizon so that $1 - 2GMu > 0$, and its formula is

$$b = \frac{r \sin \alpha}{\sqrt{1 - \frac{2GM}{r}}} = \frac{\sin \alpha}{u \sqrt{1 - 2GMu}}, \quad \text{and} \quad \frac{1}{b^2} = \frac{u^2 |1 - 2GMu|}{\sin^2 \alpha},$$

the under-the-root expression $f(u) = \frac{1}{b^2} + 2GMu^3 - u^2$ in formula (5)

$$\frac{du}{d\varphi} = u' = \pm \sqrt{\frac{1}{b^2} + 2GMu^3 - u^2} \quad ((5))$$

and the under-the-root expression $h(r) = 1 - \frac{b^2}{r^2} \left(1 - \frac{2GM}{r}\right)$ in formula (2)

$$\begin{aligned} \frac{dr}{dt} &= \pm \left(1 - \frac{2GM}{r}\right) \sqrt{1 - \frac{b^2}{r^2} \left(1 - \frac{2GM}{r}\right)} \\ \frac{d\varphi}{dt} &= \frac{b}{r^2} \left(1 - \frac{2GM}{r}\right) \end{aligned} \quad ((2))$$

are always non-negative

PROOF: Consider

$$f(u) = \frac{1}{b^2} + 2GMu^3 - u^2 = \frac{1}{b^2} - u^2(1 - 2GMu)$$

and apply the formula for $\frac{1}{b^2}$:

$$\begin{aligned} f(u) &= \frac{u^2 |1 - 2GMu|}{\sin^2 \alpha} - u^2(1 - 2GMu) \geq \frac{u^2 |1 - 2GMu|}{\sin^2 \alpha} - u^2 |1 - 2GMu| \\ &= u^2 |1 - 2GMu| \left(\frac{1}{\sin^2 \alpha} - 1\right) \geq 0 \end{aligned}$$

- because all the factors are non-negative.

Now consider

$$h(r) = 1 - \frac{b^2}{r^2} \left(1 - \frac{2GM}{r}\right).$$

According to the formulas for b ,

$$\frac{b^2}{r^2} \left(1 - \frac{2GM}{r}\right) = \sin^2 \alpha \leq 1$$

so that $h(r) \geq 0$ too.

The equality is reached when...

- $\sin^2 \alpha = 1$, i.e. when the velocity vector of a photon is perpendicular to the radius $r(\varphi)$, which happens only when the photon is outside the circular orbit reaching the closest distance to the center. Or...
- $u = 0$ which happens at infinity, or...
- $u = \frac{1}{2GM}$, i.e. at the horizon. ■

LEMMA: The function $g(u) = 2GMu^3 - u^2 \leq 0$ (while $u \in \left[0; \frac{1}{2GM}\right]$) reaches its minimum $-\frac{1}{27(GM)^2}$ at $u = \frac{1}{3GM} < \frac{1}{2GM}$, or $r = 3GM$ (i.e. on the circular orbit).

PROOF: The derivative $g'(u) = 6GMu^2 - 2u$, $g'(u) = 0$ for $u_{circ} = \frac{1}{3GM}$ so that $g(u_{circ}) = -\frac{1}{27(GM)^2} = -\frac{1}{b_{crit}^2}$. ■

THEOREM 3: The shape of the trajectory $r(t)$ defined by the ODEs (2) coincides with the shape of the curve $r(\varphi)$ defined by the ODE (2) for $u = \frac{1}{r}$.

PROOF: Consider

$$\frac{du}{d\varphi} = \frac{\partial u}{\partial r} \frac{\partial r}{\partial \varphi} = -\frac{1}{r^2} \frac{\partial r}{\partial \varphi}.$$

We obtain $\frac{\partial r}{\partial \varphi}$ dividing the ODEs (2):

$$\begin{aligned} \frac{du}{d\varphi} &= -\frac{1}{r^2} \frac{\partial r}{\partial \varphi} = \pm \frac{1}{b} \sqrt{1 - \frac{b^2}{r^2} \left(1 - \frac{2GM}{r}\right)} \\ &= \pm \sqrt{\frac{1}{b^2} - \frac{1}{r^2} \left(1 - \frac{2GM}{r}\right)} = \pm \sqrt{\frac{1}{b^2} - u^2 (1 - 2GMu)}. \end{aligned}$$

i.e. the ODE (5). ■

Inbound path $r(\varphi)$: from infinity (area A) toward the black hole

Motion of a photon from infinity toward the black hole means that $u = \frac{1}{r}$ increases from zero...

1. Either reaching its maximum u_{\max} outside the circular orbit in area A (bypassing the black hole) when $b > b_{\text{crit}} = 3GM\sqrt{3}$;
2. Or crossing the circular orbit into area B and then area C asymptotically approaching the center as a finite spiral when $b < b_{\text{crit}}$.
3. Or asymptotically approaching the circular orbit and winding around it as an infinite spiral when $b = b_{\text{crit}}$;

In order to specify the inbound motion, we must set the initial value for u' in formula (5) choosing the "+" sign.

Case 1 Bypassing a black hole: $b > b_{\text{crit}} = 3GM\sqrt{3}$. As u grows from 0 while the function $g(0) = 0$ and decreases, $f(u) = \frac{1}{b^2} + g(u)$ decreases from $\frac{1}{b^2}$ until it reaches $f_{\min} = f(u_{\text{circ}}) \geq 0$ by the Lemma. We are to prove that $f_{\min} = 0$ reaching zero at $u_{\max} < u_{\text{circ}}$ (u_{circ} delivers minimum to $g(u)$ in the Lemma).

$$g(u) > -\frac{1}{b_{\text{crit}}^2},$$

then

$$f(u) = \frac{1}{b^2} + g(u) > \frac{1}{b^2} - \frac{1}{b_{\text{crit}}^2}.$$

However,

$$\frac{1}{b^2} - \frac{1}{b_{\text{crit}}^2} < 0$$

strictly at $u = u_{\text{circ}}$. As $f(u)$ cannot be negative by Theorem 2, after reaching 0 at some $u_{\max} < u_{\text{circ}}$, $f(u)$ must increase. Therefore, u_{\max} is the closest approach of the photon, $u_{\max} < u_{\text{circ}}$. After reaching u_{\max} , u decreases because the sign at the root must be changed from "+" to "-" in the ODE (5) $u' = \pm\sqrt{f(u)}$; u decreases from u_{\max} to 0 while $f(u)$ increases along the same graph backward.

Case 2 Capture by a black hole: $b < b_{\text{crit}} = 3GM\sqrt{3}$. Following the steps of Case 1, now, however, we come to the opposite inequality

$$\frac{1}{b^2} - \frac{1}{b_{\text{crit}}^2} > 0$$

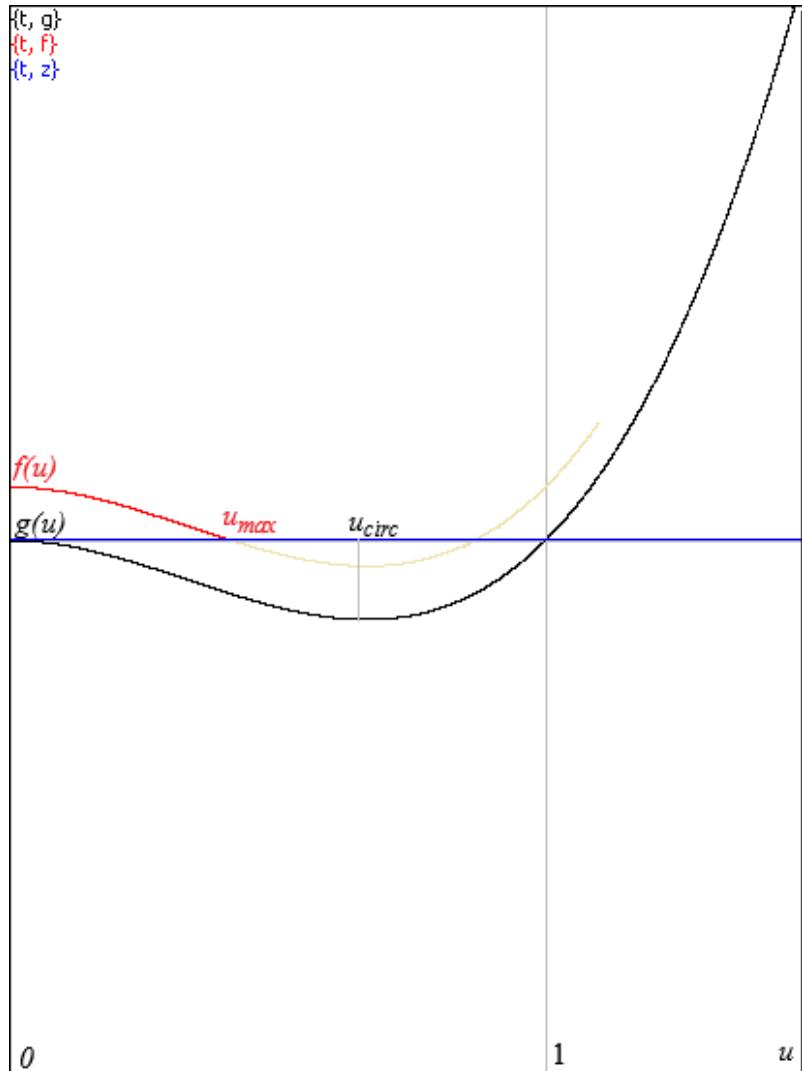


Figure 1: Case 1. Bypassing a black hole: $b > b_{crit}$

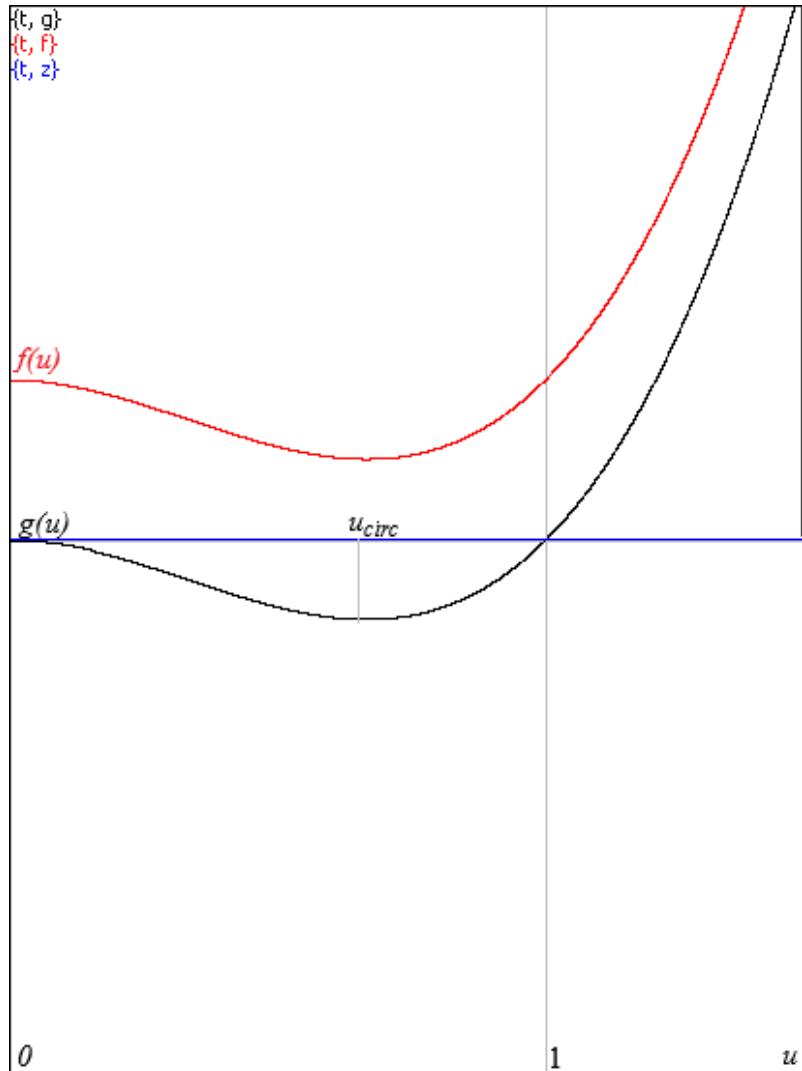


Figure 2: Case 2. Capture by a black hole: $b < b_{crit}$

meaning that $f(u)$ never reaches zero. With the sign "+" in (5), u keeps monotonously increasing so that the photon moving along a spiral crosses the circular orbit and then also the horizon.

Case 3 Capture by the circular orbit: $b = b_{crit} = 3GM\sqrt{3}$. Unlike the Cases 1, 2, now

$$\frac{1}{b^2} - \frac{1}{b_{crit}^2} = 0.$$

Again, $f(u) = \frac{1}{b^2} + g(u)$ keeps decreasing from $\frac{1}{b^2}$ towards 0, but it never reaches it, as it follows from the next ...

THEOREM 3: If $b = b_{crit}$ and a photon moves from infinity toward a black hole, u increases and $f(u)$ decreases but never reaches 0, meaning that the photon approaches the circular orbit along an infinite spiral but never crosses or touches the circular orbit.

PROOF: Suppose the opposite, i.e. that $f(u)$ does reach zero at some point (φ, r_{circ}) on the circumference of the circular orbit. Then, at this point φ , we have that $u' = 0$ by formula (5), and $u = \frac{1}{r_{circ}}$. However, according to Theorem 1, there is another solution for these initial values: the exact circular solution. Both these solutions satisfy a regular ODE (6)

$$u'' = 3GMu^2 - u \quad ((6))$$

which cannot have two different solutions for the same initial values. This controversy proves the Theorem. ■

CONCLUSION: The case of $b = b_{crit}$ is remarkable in that the incoming photon is caught by the circular orbit rather than by the horizon, winding around the circumference in a tight spiral. As we will see further, outgoing photons moving from a vicinity near the horizon away having the parameter $b = b_{crit}$, are also caught into an infinite spiral but approach the circular orbit from inside.

Inbound or outbound path $r(\varphi)$ in area B : capture or escape

When in area B , there are the following possibilities of a photon.

1. If it was emitted so that $u = \frac{1}{r}$ increases (the "+" sign in ODE (5)) and the motion is inbound with any b , u will increase to infinity and the path will cross the horizon and approach to the center. Otherwise...

2. Initially u decreases (with the "-" sign in ODE (5)), and initially the motion is outbound. Being outbound...
3. The photon either reaches its minimum u_{\min} inside area A somewhere between the horizon and circular orbit when $b < b_{\text{crit}} = 3GM\sqrt{3}$. After reaching u_{\min} , (or r_{\max}), the photon moves toward the center being caught.
4. Or it crosses the circular orbit into area A and escapes into infinity when $b > b_{\text{crit}}$.
5. Or, if $b = b_{\text{crit}}$, the photon asymptotically approaches the circular orbit in a tight infinite spiral.

Inbound only path $r(\varphi)$ in area C

When in area C , the physical theory admits only inbound motion no matter the value b , and only the choice of sign "+" in ODE (5) so that $u = \frac{1}{r}$ increases to infinity.

Tightness of the infinite spiral with $b = b_{\text{crit}}$

Here we are to discuss and introduce a measure of tightness of the special infinite spiral capturing a photon when $b = b_{\text{crit}}$. Obtain the ODE for $\frac{dr}{d\varphi}$ by dividing the ODEs (2):

$$\begin{aligned} \frac{dr}{d\varphi} &= \pm \frac{r^2}{b} \sqrt{1 - \frac{b^2}{r^2} \left(1 - \frac{2GM}{r} \right)} \\ &= \pm \frac{r^2}{b} \sqrt{1 - \frac{b^2}{r^3} (r - 2GM)} \\ &= \pm \sqrt{\frac{r^4}{b^2} - r(r - 2GM)}. \end{aligned}$$

It's convenient to introduce and study a radial distance $\rho = 3GM - r$, ($r = 3GM - \rho$; $r' = -\rho'$) measuring the distance of spiral laps in proximity of the circular radius $3GM$.

We need the formula above under the condition that $b = b_{\text{crit}} = 3GM\sqrt{3}$ or $b^2 = 27(GM)^2$.

$$\begin{aligned} r^4 &= 81(GM)^4 - 108(GM)^3 \rho + 54(GM)^2 \rho^2 - 12(GM) \rho^3 + \rho^4 \\ \frac{r^4}{b^2} &= 3(GM)^2 - 4(GM) \rho + 2\rho^2 - \frac{12}{27(GM)} \rho^3 + \frac{\rho^4}{27(GM)^2} \end{aligned}$$

$$\begin{aligned}
r(r - 2GM) &= (3GM - \rho)(3GM - \rho - 2GM) \\
&= (3GM - \rho)(GM - \rho) \\
&= 3(GM)^2 - \rho GM - 3\rho GM + \rho^2 \\
&= 3(GM)^2 - 4\rho GM + \rho^2
\end{aligned}$$

$$\frac{r^4}{b^2} - r(r - 2GM) = \rho^2 - \frac{12}{27(GM)}\rho^3 + \frac{\rho^4}{27(GM)^2}$$

and finally we get

$$\frac{d\rho}{d\varphi} = -\rho \sqrt{1 - \frac{12}{27(GM)}\rho + \frac{\rho^2}{27(GM)^2}}. \quad ((10))$$

When a photon approached close to the circular orbit, ρ is negligibly small, so that we can simplify the ODE above:

$$\frac{d\rho}{d\varphi} \approx -\rho$$

whose solution is

$$\boxed{\rho \approx e^{-\varphi}}.$$

When φ grows from 0 to infinity, $r = 3GM - \rho$ represents a tight infinite exponential - the solution of ODE (10).

In order to study the tightness of the spiral, consider the sequence $\{\rho_n = \rho((2n+1)\pi)\}$, $n = 1, 2, \dots$. These are points on consecutive laps of the spiral whose distance to the circular radius $\rho_n \rightarrow 0$. The tightness of the spiral may be measured by a coefficient $k = \frac{\rho_{n+1}}{\rho_n} = e^{-2\pi} \approx 0.0018$ and that is what we observed in Table 1 during integration of r (until appearance of numerical artefacts cause by a drop of accuracy).