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Recalling that w = — and r > 2G'M (outside the horizon) so that v < ——

r 2GM
and 1 — 2GMwu > 0, the following takes place.
THEOREM 2: Given that the parameter b is defined only outside the horizon
so that 1 — 2GMwu > 0, and its formula is
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the under-the-root expression f(u) = — + 2GMu? — u? in formula (5)
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- because all the factors are non-negative.
Now consider




According to the formulas for b,
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so that h(r) > 0 too.

The equality is reached when...

e sina = 1, i.e. when the velocity vector of a photon is perpendicular
to the radius r(¢), which happens only when the photon is outside the
circular orbit reaching the closest distance to the center. Or...

e y = 0 which happens at infinity, or...

° U= YT i.e. at the horizon.ll
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LeEMMA: The function g(u) = 2GMu3 — u? < 0 (while u € {0; })

2GM
1
reaches its minimum “GIE at u = e Sascar TS 3GM (i.e.
on the circular orbit).
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PRrROOF: The derivative ¢'(u) = 6GMu? — 2 "(u) =0 for Ueipe = =——
e deriva lvf g (u) 1 u u, ¢ (u) or u 3G
so that g(ueire) = — .1
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THEOREM 3: The shape of the trajectory r(t) defined by the ODEs (2)

(
1
coincides with the shape of the curve r(y¢) defined by the ODE (2) for u = —
r

PrOOF: Consider
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We obtain 877‘ dividing the ODEs (2):
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i.e. the ODE (5). &




Inbound path ,): from infinity (area A)
toward the black hole

1
Motion of a photon from infinity toward the black hole means that u = —
r

increases from zero...

1. Either reaching its maximum wuy., outside the circular orbit in area A
(bypassing the black hole) when b > be.i; = 3GM+/3;

2. Or crossing the circular orbit into area B and then area C asymptotically
approaching the center as a finite spiral when b < b.p.¢.

3. Or asymptotically approaching the circular orbit and winding around it
as an infinite spiral when b = b..i;

In order to specify the inbound motion, we must set the initial value for v’
in formula (5) choosing the "+" sign.

Case 1 Bypassing a black hole: ’ b > beri = 3GMA/3. ‘ Asu grows from 0 while

2
it reaches  fmin = f(Ueire) > 0 by the Lemma. We are to prove that fuin =0
reaching zero at Umax < Ucire (Ueire delivers minimum to g(u) in the Lemma).

the function g(0) =0 and decreases, f(u) = % +g(u) decreases from % until
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g(u) > —5—,
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However,
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strictly at u = ueire. As f(u) cannot be negative by Theorem 2, after reaching
0 at some Umax < Ucire, f(u) must increase. Therefore, umax is the closest
approach of the photon, Umax < Ucire- After reaching umax, u decreases because
the sign at the root must be changed from "+" to "-" in the ODE (5) v’ =
++/f(u); u decreases from tumax to 0 while f(u) increases along the same graph
backward.

Case 2 Capture by a black hole: ’b < berit = 3GMAV3. ‘ Following the steps of
Case 1, now, however, we come to the opposite inequality
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Figure 1: Case 1. Bypassing a black hole: b > b.;
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Figure 2: Case 2. Capture by a black hole: b < bgi



meaning that f(u) never reaches zero. With the sign "+ " in (5), u keeps monoto-
nously increasing so that the photon moving along a spiral crosses the circular
orbit and then also the horizon.

Case 3 Capture by the circular orbit: |b = beiy = 3GM+/3. ‘ Unlike the Cases
1, 2, now
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Again, f(u) = 2 + g(u) keeps decreasing from 0 towards 0, but it never

reaches it, as it follows from the next ...

THEOREM 3: If b = b.;; and a photon moves from infinity toward a black
hole, u increases and f(u) decreases but never reaches 0, meaning that the
photon approaches the circular orbit along an infinite spiral but never crosses
or touches the circular orbit.

PROOF: Suppose the opposite, i.e. that f(u) does reach zero at some point
(¢, Teire) on the circumference of the circular orbit. Then , at this point ¢, we

1
have that ' = 0 by formula (5), and © = ——. However, according to Theorem

Tcire
1, there is another solution for these initial values: the exact circular solution.
Both these solutions satisfy a regular ODE (6)

u” =3GMu® —u ((6))

which cannot have two different solutions for the same initial values. This
controversy proves the Theorem. Hl

CoNCLUSION: The case of b = b.;; is remarkable in that the incoming
photon is caught by the circular orbit rather than by the horizon, winding
around the circumference in a tight spiral. As we will see further, outgoing
photons moving from a vicinity near the horizon away having the parameter
b = berit, are also caught into an infinite spiral but approach the circular orbit
from inside.

Inbound or outbound path ) in area B:
capture or escape

When in area B, there are the following possibilities of a photon.

1
1. If it was emitted so that u = — increases (the "+" sign in ODE (5)) and

r
the motion is inbound with any b, u will increase to infinity and the path
will cross the horizon and approach to the center. Otherwise...



2. Initially u decreases (with the "-" sign in ODE (5)), and initially the
motion is outbound. Being outbound...

3. The photon either reaches its minimum u.,;, inside area A somewhere
between the horizon and circular orbit when b < beriy = 3GM+/3. After
reaching Umin, (Or Tmax ), the photon moves toward the center being caught.

4. Or it crosses the circular orbit into area A and escapes into infinity when
b > bcrit~

5. Or, if b = b4z, the photon asymptotically approaches the circular orbit
in a tight infinite spiral.

Inbound only path ) in area C'

When in area C, the physical theory admits only inbound motion no matter

1

the value b, and only the choice of sign "+" in ODE (5) so that u = — increases
T

to infinity.

Tightness of the infinite spiral with »-s..,

Here we are to discuss and introduce a measure of tightness of the special
d
infinite spiral capturing a photon when b = b..;;. Obtain the ODE for d—r by
¥
dividing the ODEs (2):
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It’s convenient to introduce and study a radial distance p = 3GM —r, (r =
3GM — p; ' = —p') measuring the distance of spiral laps in proximity of the
circular radius 3GM.

We need the formula above under the condition that b = bey = 3GMV3
or b =27(GM)>.
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r(r—2GM) = (BGM —p)(3GM —p—2GM)
= (BGM —p)(GM —p)
= 3(GM)? = pGM — 3pGM + p>
= 3(GM)* — 4pGM + p*
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and finally we get
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When a photon approached close to the circular orbit, p is negligibly small, so
that we can simplify the ODE above:

whose solution is

When ¢ grows from 0 to infinity, 7 = 3GM — p represents a tight infinite
exponential - the solution of ODE (10).

In order to study the tightness of the spiral, consider the sequence {p,, =
p((2n + 1)m)}, m =1, 2,...  These are points on consecutive laps of the
spiral whose distance to the circular radius p,, — 0. The tightness of the spiral

may be measured by a coefficient k = Prtr _ e~ 2™ ~ 0.0018 and that is what

n
we observed in Table 1 during integration of r (until appearance of numerical
artefacts cause by a drop of accuracy).



