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Abstract. A cross-platform interactive application called the Taylor Center performs integration of ODE's with 
unlimited order of approximation, finite step, and high accuracy, using the Modern Taylor method. It exports 
the solution in different formats, graphs it in 2D and 3D anaglyphic stereo, and performs real-time animation of 
the motion. Designed under Windows in Delphi-6, the package implements a powerful Graphical User Interface, 
and is portable to windowed versions of Linux too. The downloadable Demo of the package [6] displays a 
variety of meaningful examples including such illustrative ones as the Problem of Three and Four Bodies and 
"Choreography". The application represents a kernel, which may be developed further in several directions, 
discussed in the article.   

1. Introduction 

Unlike earlier packages [1, 2], this sophisticated Taylor Solver is designed for PCs as interactive 
application with extensive Graphical User Interface.  It is a cross platform Windows/Linux project 
developed in Borland's Delphi (a dialect of Pascal having such advance features as dynamic arrays, 
objects, and sophisticated graphics).  
 
This All-In-One application is called the Taylor Center (according to the metaphor of a �Music 
Center�) because it offers the environment, where researchers can input (import) ODE's in symbolic 
format, vary the parameters, explore the Taylor expansions and their convergence radius, integrate the 
equations with high accuracy (up to all available float point digits), store or export the results, graph 
the solutions and "play" them dynamically as bullet trajectories in real time animation. The feature 
making this application unique is that it can display non-planar 3D trajectories as anaglyphic stereo 
pairs (for viewing through Red/Blue glasses). In particular, it implements a 3D cursor (controlled by a 
conventional mouse). This cursor with "tactile" audio feedback permits user to "touch" points of non-
planar curves and view their 3D coordinates.  

 
Actually the Graphical Interface itself, reflecting all the specifics of interactive Taylor integration, 
became an important goal of the design: the goal of employing all the sophistication of the Windows 
GUI to control the environment for performing the Taylor integration and exploration of the solution 
in most comfortable manner.  
 
From the programmatic point of view, any Taylor solver differs from conventional integrators in that 
the input � an Initial Value Problem � should be provided not simply as a numeric vector and a 



subroutine computing the right hand parts, but rather as arithmetic expressions themselves, 
representing the right hand parts in order to enable automatic differentiation (understood as optimized 
classical formulas for N-th order derivatives applied to sequences of basic expressions [3]).   
 
Correspondingly, the output and interaction of a Taylor solver with other applications has its specifics 
too. The result is not just tabulated values of the solution, but rather its expansion into the Taylor 
series (an analytical element), or a sequence of such elements (although the tabulated solution may be 
exported also).  
 
In this application the equations and the initial value problem must be inputted in common 
mathematical notation and Pascal syntax. Thus, the right hand parts are expected to be finite 
arithmetic expressions of any complexity over simple variables (no array elements or loops in this 
version).     
 

2. Overview of the algorithm 
  
The processing is based on one-time parsing of arithmetic expressions (representing ODE's), and 
repeated evaluation of the obtained postfix representation.   
 
In general, any sequence of explicit equations  

 
u0 = f0({numeric values only}); 
u1 = f1(u0, {numeric values}); 
.  . . . 
un = fn(u0, u1,�, un-1, {numeric values}). 

(1)

 
given in a form of arithmetic expressions, may be parsed into a postfix sequence. Evaluation of the 
postfix sequence consists of locating triplets (Operand1, Operand2, Operation) in it, evaluating 
elementary equations 
 

Result = Operand1 ° Operand2 (2)

 
and replacing the triplets with the corresponding Result until the whole sequence reduces to just one 
term � the final result of the evaluation.  
 
Now consider an Initial Value Problem for an autonomous system of explicit 1st orders ODE's:  

uk' = fk(u1,�, um),    uk|t=a= ak,  k=1,�m (3)

where uk' means derivatives with respect to t ("hidden" in one of variables uk). Equations (3) allow 
obtaining the set of first order derivatives uk' and all higher order derivatives uk

(N) as well: that is an 
essence of the classical Taylor method. The Modern Taylor Method [3, 4] capitalizes on the fact that 
however complicated the right hand parts are, they are comprised of a sequence of simple formulas 
(instructions). Indeed, the instructions are exactly those resulting from the process of postfix 
evaluation. If the set of the allowed operations consists of the four arithmetic operations (and also 
raising to power, exponent, logarithm, trigonometric functions), computing the N-th order derivatives 
requires no more than O(N2) operations [3, 4]. Moreover, all ODE's with the so called elementary 
right hand parts (practically all ODE's used in applications) are reducible to the above mentioned 
rational and special functions format [3, 4].   
 



To achieve more flexibility in specifying an Initial Value problem, the source data is organized in four 
sections in the following order: Symbolic constants, Initial values, Auxiliary variables, ODE's (Fig 2).  
 
All the equations are processed in the following three stages:   

 
(1) They are parsed line by line into the postfix sequences for the subsequent automatic 
differentiation. As a result of this one time procedure, a postfix sequence (actually a sequence of 
instructions for an abstract processor) is created.   

 
(2) The differentiation process up to order N is performed. The set of coefficients of the Taylor 
expansion (also called analytic elements) for each variable is obtained; 

 
(3) With the obtained Taylor coefficients, the convergence radius R is estimated, an integration step 
h<R determined, and the Taylor expansion is used to increment the variables. Then, the stages 2 and 3 
may be repeated as many times as necessary (unless a singularity is reached).  

 
In this evaluation, instead of matching arithmetic operations to the corresponding CPU instructions, 
the operations are matched to the corresponding formulas of automatic differentiation, playing role of 
"instructions"  
 

type TInstruction = record 
     ty : (cc, cv, vc, vv); {flags: (C)onstant  or (V)ariable} 
     op : char;             {operation: +, -, *, /, exp, ln, cos, …} 
     i1, i2, i3 : word      {addresses, i.e. indexes of the array} 
     end; 

 
of an abstract AD Processor (Fig 1). Thus, the Processor performs iterative differentiation up to order 
N of statements (2) 

Result(N) := (Operand1 ° Operand2)(N),     N = 0, 1, 2,… 

 
according to the formulas of AD for computing N-th order derivatives of certain functions.  For 
example, if the operation is multiplication, the Processor implements the Leibnitz formula 

        N 

    (uv)(N)    = Σu(i)v(N-i) 

      i=0 

and similarly for the other operations [3, 4] (the derivatives are normalized, meaning u(i)/i!).  
 
The set of instructions would remain the same even if we need to switch from real numbers to 
complex numbers, or to the arithmetic of interval pairs, or from one real type to another, including the 
cases of software-emulated floating point types of any given length (Fig 1).  
 
Similarly, this very set of instructions may be trivially transformed into instructions of Assembler, or 
in a high level programming language. After feeding such code segment into the corresponding 
compiler, we would obtain the object code performing Automatic Differentiation for the given initial 
value problem.  
 

3. Connected problems and dependent variables as terminal values 
 

This package also allows simultaneous integration of several specially related Initial Value Problems 
called connectable. Two Initial value problems for autonomous systems 



 
u1' = f1(u1, � um); u1       = c1 
u2' = f2(u1, � um); u2|u1=c1 = c2 
. . . . . . . . . .           
um' = fm(u1, � um); um|u1=c1 = cm

u1' = g1(u1, � um); u1|u2=d2= d1  
u2' = g2(u1, � um); u2        =  d2  
. . . . . . . . . .   
um' = gm(u1, � um); um|u2=d2= dm 

  
are called connectible if both systems have the same number of similarly ordered equations and 
variables, and the initial values of the second one correspondingly equal to the terminal values of the 
first, their (hidden) independent variables being not necessarily the same. The Taylor Center makes it 
possible to deal with several connectible problems simultaneously and therefore to integrate 
piecewise-analytical solutions defined by different systems of ODE's on different intervals.  

 
There is an important special case of connectible problems, when the solutions (trajectories) of both 
systems are geometrically identical, although the equations are different. In particular, there is an 
important sub-case when the systems depend on different independent variables (the first on u1 and the 
second on  u2) and the variables u2(u1) and u1(u2) are reciprocally inverse functions: 

 
du1/du1 = 1;    u1        = c1 
du2/du1 = f2(u1, � um);     u2|u1=c1= c2  
du3/du1 = f3(u1, � um);     u3|u1=c1= c3 
. . . . . . . . . .   
dum/du1 = fm(u1, � um);    um|u1=c1= cm 

du1/du2 = 1/ f2(u1, � um);             u1|u2=d2= d1 
du2/du2 = 1                u2        = d2  
du3/du2 = f3(u1, � um)/f2(u1, � um); u3|u2=d2= d3 
 . . . . . . . . .   
dum/du2 = fm(u1, � um)/f2(u1, � um); um|u2=d2= dm 

 
The system for the inverse function u

1
(u

2
) is used for integration until u

2 
reaches a given terminal 

value, in particular zero  (u
2
 is the dependent variable in the first system, yet independent in the 

second system). Thus, obtaining exact zeros of the solution u2(u1) without iterations becomes possible 
(if only points of singularity do not occur on the way).  
 

4. Interface and environment 
 
To provide the user-friendly interactive control over a variety of parameters and modes of integration, 
the package implements powerful features and objects of the Windows GUI (represented in the Visual 
Components Library of Delphi). The outline and logical structure of the system are shown in Fig 1.  
 
The system in its current state represents a kernel written in a high level scientific programming 
language (Object Pascal); the kernel which may be further developed in different directions and for 
different platforms. 
 
An initial value problem must be entered or loaded from a file into the four edit controls (Fig 2). After 
successful compilation, users can specify different parameters and modes controlling the integration 
process (Fig 3), and the curves to be graphed. The integration process itself may be visualized. The 
result of integration � analytic elements � are stored and used for graphing the curves or to export the 
numerical solution into other systems. Moreover, the solution may be "played" as a real time dynamic 
animation of bullets moving along the trajectories in 2D or 3D stereo (viewed through Red/Blue 
glasses).  
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Fig 1. The Taylor Center outline. 

 

 

Fig 2. The main panel 
 



 

Fig 3. The integration setting page 
 

Summarizing all the features, with the current version of the Taylor Center users can: 

• Specify and study the Initial Value Problems for virtually any system of ODE's in the 
standard format of explicit 1st order ODE's with numeric and symbolic constants and 
parameters;  

• Perform numerical integration of Initial Value Problems with the high accuracy (up to all 64-
bit binary digits of mantissa), while the step of integration remains finite and does not 
approach zero (because the order of approximation is high: 30 or any higher). 

• Obtain the solution as a set of analytical elements � Taylor expansions covering the required 
domain, exportable to other systems either as is, or in tabular format; 

• Study Taylor expansions and the radius of convergence for the solution at all points of interest 
(with the only limitation that the terms in the  series do not exceed the maximum value of 
about 104932 implied by the 10-byte implementation of the real type "extended");  

• Perform integration either "blindly", or graphically visualized; either a given number of steps, 
or until an independent variable reaches a terminal value, or until a dependent variable 
reaches a terminal value;  

• Switch integration between several versions of ODE's defining the same trajectory with 
respect to different independent variables. For example, it is possible to switch the integration 
by t to that by x or y in order to reach the terminal value (or zeros) of the dependent variable;  

• Integrate piecewise-analytical ODE's;  



• Specify different methods of controlling the accuracy and the step size;  

• Specify accuracy for individual components either as an absolute or relative error tolerance, 
or both;  

• Graph color curves (trajectories) for any pair of variables of the solution up to 7 on one 
screen, either as plane projections, or as 3D stereo images to be viewed through anaglyphic 
(Red/Blue) glasses. The 3D cursor with audio feedback (controlled by a conventional mouse) 
enables "tactile" exploration of the curves literally "hanging in thin air";  

• "Play" dynamically the near-real time motion of bullets along the computed trajectories either 
as 2D or 3D stereo animation;  

• Explore several meaningful examples supplied with the package such as the problem of Three 
or Four Bodies, "Choreography". Symbolic constants and expressions make it possible to 
parameterize the equations and initial values trying different initial configurations of special 
interest.  

The current kernel version may be further developed in different directions (Fig 1):  

- To implement other types of arithmetic (complex numbers, intervals);  

- To generate compileble code in Assembler or in a high level language; 

- To simultaneously integrate an array of Initial Value Problems;  

- To compute derivatives by parameters.  

- To implement special loops and array variables (to automate expressions of high complexity in the 
right hand sides such as sums of many terms).  
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