

Interactive Environment for the Taylor integration
(in 3D Stereo)

Alexander Gofen

The Smith-Kettlewell Eye Research Institute, 2318 Fillmore St.,
San Francisco, CA 94115, USA

Keywords: Taylor solver, Unlimited order, 3D Stereo animation,

Abstract. A cross-platform interactive application called the Taylor Center performs integration of ODE's with
unlimited order of approximation, finite step, and high accuracy, using the Modern Taylor method. It exports
the solution in different formats, graphs it in 2D and 3D anaglyphic stereo, and performs real-time animation of
the motion. Designed under Windows in Delphi-6, the package implements a powerful Graphical User Interface,
and is portable to windowed versions of Linux too. The downloadable Demo of the package [6] displays a
variety of meaningful examples including such illustrative ones as the Problem of Three and Four Bodies and
"Choreography". The application represents a kernel, which may be developed further in several directions,
discussed in the article.

1. Introduction

Unlike earlier packages [1, 2], this sophisticated Taylor Solver is designed for PCs as interactive
application with extensive Graphical User Interface. It is a cross platform Windows/Linux project
developed in Borland's Delphi (a dialect of Pascal having such advance features as dynamic arrays,
objects, and sophisticated graphics).

This All-In-One application is called the Taylor Center (according to the metaphor of a �Music
Center�) because it offers the environment, where researchers can input (import) ODE's in symbolic
format, vary the parameters, explore the Taylor expansions and their convergence radius, integrate the
equations with high accuracy (up to all available float point digits), store or export the results, graph
the solutions and "play" them dynamically as bullet trajectories in real time animation. The feature
making this application unique is that it can display non-planar 3D trajectories as anaglyphic stereo
pairs (for viewing through Red/Blue glasses). In particular, it implements a 3D cursor (controlled by a
conventional mouse). This cursor with "tactile" audio feedback permits user to "touch" points of non-
planar curves and view their 3D coordinates.

Actually the Graphical Interface itself, reflecting all the specifics of interactive Taylor integration,
became an important goal of the design: the goal of employing all the sophistication of the Windows
GUI to control the environment for performing the Taylor integration and exploration of the solution
in most comfortable manner.

From the programmatic point of view, any Taylor solver differs from conventional integrators in that
the input � an Initial Value Problem � should be provided not simply as a numeric vector and a

subroutine computing the right hand parts, but rather as arithmetic expressions themselves,
representing the right hand parts in order to enable automatic differentiation (understood as optimized
classical formulas for N-th order derivatives applied to sequences of basic expressions [3]).

Correspondingly, the output and interaction of a Taylor solver with other applications has its specifics
too. The result is not just tabulated values of the solution, but rather its expansion into the Taylor
series (an analytical element), or a sequence of such elements (although the tabulated solution may be
exported also).

In this application the equations and the initial value problem must be inputted in common
mathematical notation and Pascal syntax. Thus, the right hand parts are expected to be finite
arithmetic expressions of any complexity over simple variables (no array elements or loops in this
version).

2. Overview of the algorithm

The processing is based on one-time parsing of arithmetic expressions (representing ODE's), and
repeated evaluation of the obtained postfix representation.

In general, any sequence of explicit equations

u0 = f0({numeric values only});
u1 = f1(u0, {numeric values});
. . . .
un = fn(u0, u1,�, un-1, {numeric values}).

(1)

given in a form of arithmetic expressions, may be parsed into a postfix sequence. Evaluation of the
postfix sequence consists of locating triplets (Operand1, Operand2, Operation) in it, evaluating
elementary equations

Result = Operand1 ° Operand2 (2)

and replacing the triplets with the corresponding Result until the whole sequence reduces to just one
term � the final result of the evaluation.

Now consider an Initial Value Problem for an autonomous system of explicit 1st orders ODE's:

uk' = fk(u1,�, um), uk|t=a= ak, k=1,�m (3)

where uk' means derivatives with respect to t ("hidden" in one of variables uk). Equations (3) allow
obtaining the set of first order derivatives uk' and all higher order derivatives uk

(N) as well: that is an
essence of the classical Taylor method. The Modern Taylor Method [3, 4] capitalizes on the fact that
however complicated the right hand parts are, they are comprised of a sequence of simple formulas
(instructions). Indeed, the instructions are exactly those resulting from the process of postfix
evaluation. If the set of the allowed operations consists of the four arithmetic operations (and also
raising to power, exponent, logarithm, trigonometric functions), computing the N-th order derivatives
requires no more than O(N2) operations [3, 4]. Moreover, all ODE's with the so called elementary
right hand parts (practically all ODE's used in applications) are reducible to the above mentioned
rational and special functions format [3, 4].

To achieve more flexibility in specifying an Initial Value problem, the source data is organized in four
sections in the following order: Symbolic constants, Initial values, Auxiliary variables, ODE's (Fig 2).

All the equations are processed in the following three stages:

(1) They are parsed line by line into the postfix sequences for the subsequent automatic
differentiation. As a result of this one time procedure, a postfix sequence (actually a sequence of
instructions for an abstract processor) is created.

(2) The differentiation process up to order N is performed. The set of coefficients of the Taylor
expansion (also called analytic elements) for each variable is obtained;

(3) With the obtained Taylor coefficients, the convergence radius R is estimated, an integration step
h<R determined, and the Taylor expansion is used to increment the variables. Then, the stages 2 and 3
may be repeated as many times as necessary (unless a singularity is reached).

In this evaluation, instead of matching arithmetic operations to the corresponding CPU instructions,
the operations are matched to the corresponding formulas of automatic differentiation, playing role of
"instructions"

type TInstruction = record
 ty : (cc, cv, vc, vv); {flags: (C)onstant or (V)ariable}
 op : char; {operation: +, -, *, /, exp, ln, cos, …}
 i1, i2, i3 : word {addresses, i.e. indexes of the array}
 end;

of an abstract AD Processor (Fig 1). Thus, the Processor performs iterative differentiation up to order
N of statements (2)

Result(N) := (Operand1 ° Operand2)(N), N = 0, 1, 2,…

according to the formulas of AD for computing N-th order derivatives of certain functions. For
example, if the operation is multiplication, the Processor implements the Leibnitz formula

 N

 (uv)(N) = Σu(i)v(N-i)

 i=0

and similarly for the other operations [3, 4] (the derivatives are normalized, meaning u(i)/i!).

The set of instructions would remain the same even if we need to switch from real numbers to
complex numbers, or to the arithmetic of interval pairs, or from one real type to another, including the
cases of software-emulated floating point types of any given length (Fig 1).

Similarly, this very set of instructions may be trivially transformed into instructions of Assembler, or
in a high level programming language. After feeding such code segment into the corresponding
compiler, we would obtain the object code performing Automatic Differentiation for the given initial
value problem.

3. Connected problems and dependent variables as terminal values

This package also allows simultaneous integration of several specially related Initial Value Problems
called connectable. Two Initial value problems for autonomous systems

u1' = f1(u1, � um); u1 = c1
u2' = f2(u1, � um); u2|u1=c1 = c2
.
um' = fm(u1, � um); um|u1=c1 = cm

u1' = g1(u1, � um); u1|u2=d2= d1
u2' = g2(u1, � um); u2 = d2
.
um' = gm(u1, � um); um|u2=d2= dm

are called connectible if both systems have the same number of similarly ordered equations and
variables, and the initial values of the second one correspondingly equal to the terminal values of the
first, their (hidden) independent variables being not necessarily the same. The Taylor Center makes it
possible to deal with several connectible problems simultaneously and therefore to integrate
piecewise-analytical solutions defined by different systems of ODE's on different intervals.

There is an important special case of connectible problems, when the solutions (trajectories) of both
systems are geometrically identical, although the equations are different. In particular, there is an
important sub-case when the systems depend on different independent variables (the first on u1 and the
second on u2) and the variables u2(u1) and u1(u2) are reciprocally inverse functions:

du1/du1 = 1; u1 = c1
du2/du1 = f2(u1, � um); u2|u1=c1= c2
du3/du1 = f3(u1, � um); u3|u1=c1= c3
.
dum/du1 = fm(u1, � um); um|u1=c1= cm

du1/du2 = 1/ f2(u1, � um); u1|u2=d2= d1
du2/du2 = 1 u2 = d2
du3/du2 = f3(u1, � um)/f2(u1, � um); u3|u2=d2= d3

dum/du2 = fm(u1, � um)/f2(u1, � um); um|u2=d2= dm

The system for the inverse function u

1
(u

2
) is used for integration until u

2
reaches a given terminal

value, in particular zero (u
2
 is the dependent variable in the first system, yet independent in the

second system). Thus, obtaining exact zeros of the solution u2(u1) without iterations becomes possible
(if only points of singularity do not occur on the way).

4. Interface and environment

To provide the user-friendly interactive control over a variety of parameters and modes of integration,
the package implements powerful features and objects of the Windows GUI (represented in the Visual
Components Library of Delphi). The outline and logical structure of the system are shown in Fig 1.

The system in its current state represents a kernel written in a high level scientific programming
language (Object Pascal); the kernel which may be further developed in different directions and for
different platforms.

An initial value problem must be entered or loaded from a file into the four edit controls (Fig 2). After
successful compilation, users can specify different parameters and modes controlling the integration
process (Fig 3), and the curves to be graphed. The integration process itself may be visualized. The
result of integration � analytic elements � are stored and used for graphing the curves or to export the
numerical solution into other systems. Moreover, the solution may be "played" as a real time dynamic
animation of bullets moving along the trajectories in 2D or 3D stereo (viewed through Red/Blue
glasses).

Interactive environment
to input ODEs, to control the

integration and output.

Source data

The solution as
analytical elements

Graphics and
animation

The tabulated
solution

Instructions for the
AD-processor

Real type extended

Emulator of
abstract AD-
Processor(1)

External systems:

Instructions in Assembler
or high level languages �
to be compiled and run in
other systems to achieve

the ultimate speed(2)

The Taylor Center: Structure and Data Flow
Portable to windowed Linux (not yet implemented)

Other value types

Emulator of
AD-Processor for:
complex numbers,

real numbers of any
length, intervals(2)

(1) Native Intel 10 byte float point numbers
(64 bit mantissa)

(2) Not yet implemented

Parsing and compiling into�

Fig 1. The Taylor Center outline.

Fig 2. The main panel

Fig 3. The integration setting page

Summarizing all the features, with the current version of the Taylor Center users can:

• Specify and study the Initial Value Problems for virtually any system of ODE's in the
standard format of explicit 1st order ODE's with numeric and symbolic constants and
parameters;

• Perform numerical integration of Initial Value Problems with the high accuracy (up to all 64-
bit binary digits of mantissa), while the step of integration remains finite and does not
approach zero (because the order of approximation is high: 30 or any higher).

• Obtain the solution as a set of analytical elements � Taylor expansions covering the required
domain, exportable to other systems either as is, or in tabular format;

• Study Taylor expansions and the radius of convergence for the solution at all points of interest
(with the only limitation that the terms in the series do not exceed the maximum value of
about 104932 implied by the 10-byte implementation of the real type "extended");

• Perform integration either "blindly", or graphically visualized; either a given number of steps,
or until an independent variable reaches a terminal value, or until a dependent variable
reaches a terminal value;

• Switch integration between several versions of ODE's defining the same trajectory with
respect to different independent variables. For example, it is possible to switch the integration
by t to that by x or y in order to reach the terminal value (or zeros) of the dependent variable;

• Integrate piecewise-analytical ODE's;

• Specify different methods of controlling the accuracy and the step size;

• Specify accuracy for individual components either as an absolute or relative error tolerance,
or both;

• Graph color curves (trajectories) for any pair of variables of the solution up to 7 on one
screen, either as plane projections, or as 3D stereo images to be viewed through anaglyphic
(Red/Blue) glasses. The 3D cursor with audio feedback (controlled by a conventional mouse)
enables "tactile" exploration of the curves literally "hanging in thin air";

• "Play" dynamically the near-real time motion of bullets along the computed trajectories either
as 2D or 3D stereo animation;

• Explore several meaningful examples supplied with the package such as the problem of Three
or Four Bodies, "Choreography". Symbolic constants and expressions make it possible to
parameterize the equations and initial values trying different initial configurations of special
interest.

The current kernel version may be further developed in different directions (Fig 1):

- To implement other types of arithmetic (complex numbers, intervals);

- To generate compileble code in Assembler or in a high level language;

- To simultaneously integrate an array of Initial Value Problems;

- To compute derivatives by parameters.

- To implement special loops and array variables (to automate expressions of high complexity in the
right hand sides such as sums of many terms).

References
[1] Chang Y. F., Corliss G.: ATOMFT: Solving ODEs and DAE Using Taylor Series. Computers

Math. Applic. Vol. 28, No. 10-12, 1994. pp. 209-233.
[2] Chang Y. F. ATOMFT User Manual. 1986. Claremont McKenna College, Claremont, CA, 91711
[3] Gofen, A. M.: Taylor Method of Integrating Ordinary Differential Equations: the Problem of Steps

and Singularities. Cosmic Research, Vol. 30, No. 6, pp. 581-593 (1992)
[4] Gofen, A. M.: ODEs and Redefining the Concept of Elementary Functions. In: P.M.A. Sloot et al.

ICCS 2002, LNCS 2329. Springer-Verlag, Berlin 2002.
[5] Gofen, A. M.: The Taylor Center for PCs. In: P.M.A. Sloot et al. ICCS 2002, LNCS 2329.

Springer-Verlag, Berlin 2002.
[6] Gofen, A. M.: The Taylor Center Demo for PCs and the User Manual.

http://www.ski.org/gofen/TaylorMethod.htm

