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Abstract. The article attempts to answer the question why the so called
�removable� or �regular� singularities in certain analytic functions cannot be
removed. This problem may be understood in the frame of the generalized
elementary functions (i.e. functions de�ned as solutions of explicit rational
Ordinary Di¤erential Equations). Along with several known examples, the ar-
ticle produces a family of in�nitely many functions having regular singularities.
There are formulated also two open questions.

1. Introduction

The concept of removable (or regular) singularities emerges when an analytic
function x(t) is presented either as a formula, or as a solution of an Initial Value
Problem (IVP) for ODEs, invalid at an isolated point, say t = 0, yet valid in
its neighborhood. If by convention the proper value is assigned to x(t) at t = 0,
the function at this point becomes holomorphic, so that its �seeming singularity�
is �removed�. That is, the singularity contained in the formula or the equations
de�ning the function, does not necessarily belong to this function: for example

x(t) =
+
p
1 + t� 1
t

; xjt=0 =
1

2
:

As a solution of the polynomial equation tx2+2x�1 = 0, the function x(t) does not
have another algebraic or rational non-singular representation at t = 0. However
x(t) satis�es a regular ODE at t = 0

x0 = � x2

2tx+ 2
; xjt=0 =

1

2

(and some singular ODEs too).
An entire function x = tet is represented via a regular formula. Still, ODEs

de�ning it may be either singular or regular at t = 0 (Item 10, Table 1).
However there exist functions for which all currently known formulas or ODEs

have a singularity at an isolated point, even though the functions themselves are
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holomorphic at this point. The examples of such functions are x(t) = et�1
t ; and

x(t) = cos
p
t , and the solution of the IVP

tx00 � x = 0; xjt=0 = 0; x0jt=0 = 1;

and each of functions 1-7, Table 1.
Is it possible that regular ODEs representing these functions exist, but are not

yet known? This question makes sense only if we specify in which class of equations
we are looking for the answer. If the right hand sides of the ODEs are allowed to
be any analytic functions, the answer is trivial: Just introduce notation for a new
entire analytic function and its derivative.

We consider a subclass of analytic functions called generalized elementary func-
tions (�rst introduced by R. Moore [1]). This class widens the conventionally de�ned
(by Liouville) elementary functions to include practically all functions used in ap-
plications. In simplest terms, generalized elementary functions [2] are those which
may be de�ned as solutions of IVPs for explicit ODEs having rational right hand
sides regular at the initial point. The goal is to prove that x(t) = et�1

t and several
other functions (Items 1-7, Table 1) cannot satisfy any rational regular ODE at
t = 0.

All throughout this paper functions and solutions of ODEs are considered as
analytic functions in complex space C.

2. Polynomial ODEs having the same solution

If we are given a polynomial ODE having a solution x(t), it is possible to obtain
a non-trivial family of polynomial ODEs (not necessarily just multiplied by a non-
zero factor), still having the same solution x(t). We are particularly interested in
the case when all derivatives of x(t) are rational at t = 0.

Lemma 1. Let an analytic function x(t) at the neighborhood of t = 0 satisfy a
nontrivial polynomial ODE

(2.1) F (t; x; x0; � � � ; x(m)) =
qX

k=1

akt
�x�(x0) :::(x(m))! = 0;

(2.2) x(m)
���
t=0

= rm; m = 0; 1; 2; ::::

with complex coe¢ cients ak (k is omitted at power indexes �k; �k; :::). Then this
x(t) also satis�es in�nitely many polynomial ODEs, such that their coe¢ cients are
solutions of a special linear algebraic system 2.4.

In particular, if all derivatives x(m)
��
t=0

are rational, there exists a polynomial
ODE with rational coe¢ cients satis�ed by x(t).
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Proof. Obtain a sequence of polynomial ODEs by di¤erentiating 2.1:

F0(t; x; : : : ; x
(m)) = F =

X
akt

�x�(x0) :::(x(m))! =
X
akM0k = 0;

d

dt
F0(t; x; : : : ; x

(m)) = F1(t; x; : : : ; x
(m); x(m+1)) =

X
ak
d

dt
M0k =

=
X
ak(�t

��1x�(x0) :::(x(m))! + �t�x��1(x0)+1:::(x(m))! + :::

+ !t�x�(x0) :::(x(m))!�1x(m+1)) =
X
akM1k = 0;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dn

dtn
F0(t; x; : : : ; x

(m)) = Fn(t; x; : : : ; x
(m); :::; x(m+n)) =

qX
k=1

akMnk = 0

(2.3)

. . . . . . . . . . . . . . . . . . . . . . . . . .

Here valuesM0k denote monomials of polynomial 2.1, whileMnk are n-order deriv-
atives of those monomials. Substitute the initial values 2.2 into equations 2.3,
obtaining a linear algebraic system

(2.4) a1Mn1 + a2Mn2 + :::+ aqMnq = 0; n = 0; 1; 2; :::

in a1; a2; :::aq. System 2.4 is an in�nite over-de�ned yet solvable linear homogeneous
system, having a non-zero solution � coe¢ cients of the given polynomial 2.1 by
the condition of the Lemma. Therefore system 2.4 has in�nitely many solutions
(say a1; a2; :::aq multiplied by a factor, and possibly others).

Let b1; b2; :::bq be any of those solutions. It generates a polynomial equation

(2.5) G0 =
X
bkT

�Y �0 Y

1 :::Y

!
m = 0

di¤ering from the given 2.1

F0 =
X
akT

�X�
0X


1 :::X

!
m = 0

in the coe¢ cients at the corresponding monomials.
We are going to prove that x(t) satis�es any polynomial G0 with coe¢ cients

b1; b2; :::bq obtained as a solution of the linear system 2.4. Substitute x(t) into G0,
denoting a non-zero deviation as "(t):

G0(t; x; : : : ; x
(m)) =

qX
k=1

bkt
�x�(x0) :::(x(m))! = "(t):

Apply di¤erentiation to G0; obtain an in�nite system analogous to 2.3, and
observe that at t = 0

Gn(t; x; : : : ; x
(m); :::; x(m+n))jt=0 = "(n)(t)jt=0 = 0; n = 0; 1; 2; :::

for all n. Therefore, as an analytic function, "(t) � 0; so that x(t) does satisfy any
polynomial ODE generated by the linear system 2.4. This proves the �rst statement
of the Lemma.

Now assume that all values rm of derivatives 2.2 are rational. In order to obtain
the general solutions of 2.4, consider the matrix

M = kMijk 0 6 i <1; 1 6 j 6 q
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of the system. This matrix (and the linear system) is in�nite only in the number
of rows (equations). Only �nite number of them are linearly independent. Let the
maximal number of linearly independent equations 2.4 be p > 0, p < q. Therefore
there must exist p independent variables with a nonzero sub-determinant corre-
sponding to them, and q � p dependent variables. Among b1; b2; :::bq, consider p
those which are independent, and assign them rational values. Then the remaining
dependent variables must all be rational too (as ratios of sub-determinants of ma-
trixM , whose all elements are rational numbers). The obtained rational coe¢ cients
b1; b2; :::bq generate the polynomial G0 having the solution x(t), which completes
the proof. �

Example 1. As an illustration, consider an analytic element x(m)
��
t=0

= m! ,
m = 0; 1; 2; :::(representing x = 1

1�t indeed), and an implicit polynomial equation

(2.6) Ax2 +Bxt+ Cx0t+Dx+ Ex0 + F = 0

whose coe¢ cients A;B; ::: are to be determined. By di¤erentiation and substitution
of the initial values obtain

A +D + E + F = 0

A(m+ 1)! +Bm! + Cmm! +Dm! + E(m+ 1)! = 0; m = 1; 2; :::

The general solution of this system

B = �A�D � E; C = �A� E; F = �A�D � E

delivers in�nitely many solutions. In particular, the three solutions below exemplify
di¤erent polynomial equations all satis�ed by x(t):

E = 0; A = 0; D = 1 E = 1; A = �1; D = 0 E = 1; A = 0; D = �1
B = �1; C = 0; F = �1 B = 0; C = 0; F = �1 B = 0; C = �1; F = 0

x� xt� 1 = 0 x0 � x2 = 0 x0 � x0t� x = 0

3. No regular representation for et�1
t

We deal with the entire function

x(t) =
et � 1
t

; xjt=0 = 1:

It is easily checked that

(3.1) x(m)
���
t=0

=
1

m+ 1
; m = 0; 1; 2; ::::

Theorem 1. The function x(t) cannot be a solution of any non-trivial, implicit,
polynomial ODE

F (t; x; x0; � � � ; x(m)) = 0
with integer coe¢ cients in the corresponding polynomial

F (T; X0; X1; � � � ; Xm);

having
@F

@Xm

����
t=0

6= 0:
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Proof. Denote

(3.2) F0(t; x; : : : ; x
(m)) = F =

X
akt

�x�(x0) :::(x(m))! = 0

where ak are integers (k is omitted at power indexes �k; �k; :::).
Repeatedly di¤erentiate relation 3.2, denoting the result of N di¤erentiations

by

FN (t; x; : : : ; x
(m); :::; x(m+N)) =

dN

dtN
F0(t; x; : : : ; x

(m)):

Prove by the induction, that in each of polynomials FN the highest derivative
x(m+N) appears only in one expression always with the same factor @F0

@Xm
. Observe,

that

F1 =
d

dt
F0(t; x; : : : ; x

(m)) =
@F0
@Xm

x(m+1) +Q0(t; x; : : : ; x
(m));

F2 =
d

dt
F1(t; x; : : : ; x

(m+1)) =
@F1

@Xm+1
x(m+2) +Q1(t; x; : : : ; x

(m+1)) =

=
@F0
@Xm

x(m+2) +Q1(t; x; : : : ; x
(m+1)):

Assuming

FN =
@F0(t; x; : : : ; x

(m))

@Xm
x(m+N) +QN�1(t; x; : : : ; x

(m+N�1));

@FN�1(t; x; : : : ; x
(m+N�1))

@Xm+N�1
=
@F0
@Xm

to be true for N , obtain

FN+1 =
d

dt
FN (t; x; : : : ; x

(m+N)) =
@FN

@Xm+N
x(m+N+1)+QN (t; x; : : : ; x

(m+N)) =

=
@

@Xm+N

�
@F0
@Xm

x(m+N)| {z }+QN�1(t; x; : : : ; x(m+N�1))�x(m+N+1)+
the only occurrence of x(m+N) in FN

+QN (t; x; : : : ; x
(m+N)) =

@F0
@Xm

x(m+N+1) +QN (t; x; : : : ; x
(m+N)):

Observe that the polynomials FN have integer coe¢ cients. By the condition of

this Theorem, @F0
@Xm

���
t=0

= A 6= 0. As x(k)jt=0 = 1
k+1 , the value A is rational.

Multiply F0 by a proper integer to clear all denominators so that value @F0
@Xm

���
t=0

= A

becomes an integer. Then the equation for FN takes the form:

(3.3) FN =
A

m+N + 1
+QN�1(t; x; : : : ; x

(m+N�1)) = 0

With growing N , the denominator m + N + 1 will become greater than A, and
then it will reach some prime p = m+N + 1 so that Ap is a fraction in the lowest

terms. All the remaining terms in QN�1(t; x; : : : ; x(m+N�1)) must be integers or
fractions, whose denominators contain primes less than p. Thus the isolated fraction
A
p and QN�1(t; x; : : : ; x

(m+N�1)) cannot cancel, which is impossible, proving the
Theorem. �
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Unlike the previous, the next theorem deals with ODEs having complex (non-
integer) coe¢ cients.

Theorem 2. The function x(t) cannot be a solution of any non-trivial, implicit,
polynomial ODE with complex coe¢ cients

(3.4) F (t; x; x0; :::; x(m)) = 0

having

(3.5)
@F

@Xm

����
t=0

6= 0:

Proof. Assume the opposite, that ODE 3.4 has x(t) as a solution in a neigh-
borhood of t = 0.

Step 0 : From complex to real coe¢ cients. Observe, that x(t) and all its deriv-
atives satisfying polynomial 3.4, are real-valued functions on the real axis. Assume
therefore the coe¢ cients of polynomial 3.4 are real.

Step 1 : From irrational to rational coe¢ cients. According to Lemma 1, x(t)
must satisfy in�nitely many nontrivial polynomial ODEs with rational coe¢ cients
b1; b2; :::bq, obtainable as solutions of the linear algebraic equation 2.4. The coef-
�cients a1; a2; :::aq of 3.4 are the solutions of linear system 2.4 too. Among them
consider the independent ones ak, and choose their rational approximation bk so
close to ak, that for the modi�ed polynomial G0 (Lemma 1, equation 2.5) corre-
sponding to the complete set of rational coe¢ cients b1; b2; :::bq, condition 3.5 still
holds. To not complicate notation, assume that the given equation 3.4 already has
all rational coe¢ cients.

Step 3 : Apply a proper integer factor to the polynomial equation 3.4 (having
rational coe¢ cients) to clear all denominators. Now x(t) satis�es a polynomial
equation with integer coe¢ cients � impossible, according to Theorem 1, which
proves this theorem. �

Corollary 1. The function x(t) cannot be a solution of an IVP for any ex-
plicit rational ODE

(3.6) x(m+1) =
P (t; x; x0; :::; x(m))

Q(t; x; x0; :::; x(m))

having the denominator

(3.7) Qjt=0 6= 0;

nor indeed it can be a solution of an IVP for any explicit polynomial ODE

x(m+1) = P (t; x; x0; :::; x(m)):

The proof of this corollary relies on the following

Lemma 2. The implicit polynomial ODE 3.4 non-singular at t = 0 (Condition
3.5) and the explicit rational ODE 3.6 with a nonzero denominator (Condition 3.7)
converts into each other.

Proof. Really, in a rational ODE 3.6 written as a polynomial equation

F = x(m+1)Q(t; x; x0; :::; x(m))� P (t; x; x0; :::; x(m)) = 0
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derivative @F
@Xn+1

���
t=0

= Qjt=0 6= 0. Inversely, if a polynomial ODE 3.4 is given,

apply d
dt

@F

@T
+
@F

@X
x0 + :::+

@F

@Xm�1
x(m) +

@F

@Xm
x(m+1) = 0

and obtain a rational ODE relying on condition 3.5

x(m+1) = �
@F
@T +

@F
@X x

0 + :::+ @F
@Xm�1

x(m)

@F
@Xm

�

Proof. (The Corollary). Assume that the rational ODE 3.6 exists under con-
dition 3.7. According to the Lemma, rational ODE 3.6 converts to the polynomial
one. That is impossible according to Theorem 2, which proves this corollary. �

4. Other functions having no regular representation

The method of proof in Theorem 1 applies not only to x(t) having expansion
3.1, but also to in�nitely many other analytic functions de�ned by a variety of
expansions (Examples 2-7, Table 1 ).

Corollary 2. Let H(n) 6= 0 be an integer-valued function such that the
maximal prime p 6 n occurs among the factors of H(n), and let G(n) be an integer-
valued function, whose factors do not exceed n. Then the statement of Theorem 1
holds also for functions de�ned by an analytic element

x(n)jt=0 =
(

G(n�1)
H(n) for in�nitely many prime values of n
0 otherwise

Proof. Reconsider equation 3.3 in Theorem 1, which takes the form

(4.1) FN =
AG(m+N � 1)
H(m+N)

+QN�1(t; x; : : : ; x
(m+N�1)) = 0:

Choose such a big n = m + N , that n is prime, n > A. Then AG(m+N�1)
H(m+N) is a

fraction in the lowest terms, cancellation in equation 4.1 is impossible, proving this
corollary. �

It is easy to see that Examples 2-7, Table 1, meet the condition of Corollary 2.
Two more examples (not in the Table), de�ned by their expansion at one point
only, also do: x(n)jt=0 = 1

n! , and x
(n)jt=0 = 1

nn . (Other representations of these
entire analytic functions are not known).

5. Discussion

Another proof of Theorem 2 belongs to H. Flanders [3,4]. Moreover, he proved
that among ODEs of �rst order de�ning x = et�1

t , the known ODEs

x0 = R(x) =
tx� x+ 1

t
P (t; x; x0) = tx0 � tx+ x� 1 = 0(5.1)

are unique in the sense, that any implicit �rst order polynomial ODE divides by P ,
while any explicit rational �rst order ODE reduces to R.
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Table 1 summarizes the functions considered in the article. Items (1-7) have no
regular representation. Formulas for functions (8,9) are regular at t = 0: they are
entered into the Table for comparison only. (There exist both regular and singular
ODEs for function (8) and (12). We do not know any non-singular rational ODE
for the Bessel functions (11), nor is Corollary 2 applicable to them.

5.1. Taylor expansions for elementary functions. Although Theorem 2
and Corollaries 1, 2 for functions (1-7) in Table 1 are about certain specialty of the
point t = 0 in these functions, it is not yet known whether these functions are non-
elementary at this isolated point. In order to prove it, a stronger theorem should
be established (see the Proposition in the next section). We can only suspect that
x(t) is possibly non-elementary at t = 0. If so, then any system of rational ODEs
satis�ed by x(t) must be singular, so that specialty of the point t = 0 in x(t) is
�unremovable�in the class of elementary functions.

Functions ODEs Derivatives at t = 0

1 x = et�1
t x0 = tx�x+1

t x(n) = 1
n+1

2 x = sin t
t x0 = y�x

t x(n) = (�1)n=2
n+1 even n, or 0

y = cos t y0 = �z y(n) = (�1)n=2 even n, or 0
z = sin t z0 = y z(n) = (�1)(n+1)=2 odd n, or 0

3 x = cos t�1
t2 x0 = 2�2y�tz

t3 x(n) = (�1)n=2+1
(n+1)(n+2) even n, or 0

y = cos t y0 = �z y(n) = (�1)n=2 even n, or 0
z = sin t z0 = y z(n) = (�1)(n+1)=2 odd n, or 0

4 x = cos
p
t x0 = �yz

2t or x00 = �x+2x0

4t x(n) = (�1)n n!
(2n)!

y = sin
p
t y0 = xz

2t singular
z =

p
t z0 = z

2t singular

5 x = cos
p
t�1
t x0 = �vz�2u+2

2t2 x(n) = (�1)n+1 (n�1)!(2n)!

u = cos
p
t u0 = �vz

2t u(n) = (�1)n n!
(2n)!

v = sin
p
t v0 = uz

2t singular
z =

p
t z0 = z

2t singular
6 tx00 � x = 0 x00 = x

t x(n) = 1
(n�1)! ; n > 1; x(0) = 0

7 x = ln(t+1)
t x0 = 1�tx�x

t(t+1) x(n) = (�1)n+1n!
n+1

8 x = ln(t+ 1) x0 = 1
t+1 x(n) = (�1)n�1 (n� 1)!; x(0) = 0

9 x = et x0 = x x(n) = 1

10 x = tet x0 = x
t + x or x00 = 2x0 � x x(n) = n

11 Bessel functions x00 = �tx0�(t2�p2)x
t2 x(n) =

(�1)kCk
2k+p

22k+p
; n = 2k + p

Jp; p = 0; 1; 2; ::: or 0
12 Lambert function x(t)ex(t) = t ; x0 = x

t(x+1) or x(n) = (�1)n�1 nn�1; x(0) = 0
x00 = (x0)2(x0t� 2)

Table 1. Summary of functions, ODEs de�ning them, and their n-order derivatives

Elementary functions represent practically all functions used in applications,
and they are elementary (almost) at all points of their holomorphy. Yet their
Taylor expansions have certain specialty, distinguishing them from non-elementary
functions: their Taylor coe¢ cients are obtainable via a �xed number of explicit
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formulas of Automatic Di¤erentiation (AD), corresponding to a system of explicit
rational ODEs and algebraic relations [2]. Systems of implicit rational ODEs and
implicit algebraic relations are considered by Nedialkov and Pryce [5]. Generally,
an expansion generated by an arbitrary recursive formula or algorithm may not be
expected to represent a function being elementary at this or other points.

5.2. Open statements. The method of proof of Theorem 2 for an n-order
ODE is not applicable to systems of ODEs, leaving open the following

Proposition 1. An entire function

x(t) =
et � 1
t

; x(m)jt=0 =
1

m+ 1
; m = 0; 1; 2; ::::

at the point t = 0 cannot be a solution of an IVP for any system of rational ODEs

x0 =
P1(t; x; y; z; :::)

Q1(t; x; y; z; :::)
(5.2)

y0 =
P2(t; x; y; z; :::)

Q2(t; x; y; z; :::)

:::::::::::::

whose all denominators Qijt=0 6= 0, nor indeed it can be a solution of an IVP for
any system of explicit polynomial ODEs

x0 = P1(t; x; y; z; :::)

y0 = P2(t; x; y; z; :::)

:::::::::::::

If proved, this Proposition would establish existence of a new type of special
points in elementary analytic functions (along with Poles, Branching, and Essential
singularities).

Another open statement (which, if proved, would solve Proposition 1), is the
following

Conjecture 1. Consider an IVP for a system of rational ODEs 5.2 with
nonzero denominators at a given point (t0; x0; y0; z0; :::) of the phase space so that
the IVP has a unique holomorphic solution (x(t); y(t); z(t); :::) in a neighborhood
of t0: In particular, all derivatives x(k)jt=t0 = ak, k = 0; 1; 2; :::. Then there exists
an explicit rational ODE of order n > 1

x(n) =
F (t; x; :::; x(n�1))

G(t; x; :::; x(n�1))
; x(k)jt=t0 = ak; k = 0; 2; :::n� 1

whose denominator G(t0; a0; :::; an�1) 6= 0; so that the IVP at (t0; a0; :::; an�1)
has x(t) as a unique holomorphic solution. Or there exists an implicit polynomial
ODE

H(t; x; :::; x(n�1); x(n)) = 0

regular at the point (t0; a0; :::; an), i.e.
@H(t0; a0; :::; an)

@Xn
6= 0; (Xn = x(n)),

so that the IVP at (t0; a0; :::; an); H(t0; a0; :::; an) = 0; has x(t) as a unique
holomorphic solution.
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Remark 1. Here polynomial H may be assumed linear in x(n). If it isn�t,
di¤erentiate it so that

dH

dt
=
@H(t; x; :::; x(n))

@Xn
x(n+1) +

@H(t; x; :::; x(n))

@Xn�1
x(n) + :::

is already linear in the now leading derivative x(n+1). Regularity of this ODE de-

pends on the same factor
@H(t0; a0; :::; an)

@Xn
.

The Conjecture claims convertibility of an explicit �rst order system of rational
ODEs regular at a point into one explicit rational ODE of order n regular at this
point. (The opposite conversion from one n-order ODE into a system of �rst order
ODEs is well known and trivial).
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